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1 Introduction

This paper describes the design of a collection of Fortran subroutines for the direct solution of

sparse symmetric sets of n linear equations

Ax = b, (1.1)

when the matrix A is symmetric and has a significant number of zero diagonal entries. An

example of applications in which such linear systems arise is the equality-constrained

least-squares problem

minimize ||Bx − c|| (1.2)2
x

subject to

Cx = d. (1.3)

This is equivalent to solving the sparse symmetric linear system

I B r c
0 C λ = d . (1.4)

T TB C 0 x 0

Another example is the quadratic programming problem

1 T Tminimize x Hx + c x (1.5)2x

subject to the linear equality constraints (1.3), where H is a symmetric matrix. Such problems

arise both in their own right and as subproblems in constrained optimization calculations. Under

a suitable inertial condition, the problem is equivalent to solving the symmetric but indefinite

system of linear equations
TH C x − c= . (1.6)

C 0 λ d
Our earlier Harwell Subroutine Library code MA27 (Duff and Reid 1982 and 1983) uses a

multifrontal solution technique and is unusual in being able to handle indefinite matrices. It has a

preliminary analysis phase that chooses a tentative pivot sequence from the sparsity pattern

alone, assuming that the matrix is definite so that all the diagonal entries are nonzero and suitable

as 1 × 1 pivots. For the indefinite case, this tentative pivot sequence is modified in the

factorization phase to maintain stability by delaying the use of a pivot if it is too small or by

replacing two pivots by a 2 × 2 block pivot (Bunch and Parlett 1971).

The assumption that all the diagonal entries are nonzero is clearly violated in the above

examples. For such problems, the fill-in during the factorization phase of MA27 can be

significantly greater than predicted by the analysis phase. Duff, Gould, Reid, Scott, and Turner

(1991) found that the use of 2 × 2 pivots with zeros on the diagonal alleviated this problem and

also assisted the preservation of sparsity during the analysis phase. Our new code, MA47, is
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based upon this work and, like MA27, uses a multifrontal method. It will work for the definite

case, but there are many opportunities for simplifications and efficiency improvements, so we

plan to provide a separate code for this special case.

The factorization used has the form

T TA = P L D L P (1.7)

where P is a permutation, L is unit lower triangular, and D is block diagonal. A tentative choice

of the permutation and blocking is made by working symbolically from the zero/nonzero

structure of the matrix A. We call this the analyse phase. Given the results from this phase, we

factorize a matrix of the given structure, including symmetric permutations for the sake of

numerical stability, but trying to keep close to the tentative pivotal sequence and block structure.

Finally, we use the factorization to solve for a particular vector b.

Throughout this paper, we use the term entry for a matrix coefficient that is nonzero or might

be nonzero. Note that sometimes an entry may have the value zero, but a coefficient that is not an

entry is always zero. If a coefficient of the reduced matrix is obtained by modification of an

entry, we regard the result as an entry even if it has the value zero since it might be nonzero for

another matrix of the same pattern. Also, the user may find it convenient to treat a zero as an

entry during the analyse phase in anticipation of a later matrix having a nonzero in the

corresponding position.

MA47 accepts an n × n symmetric sparse matrix whose entries are stored in any order in a real

array with their row and column indices stored in corresponding positions in integer arrays. Each

pair of off-diagonal entries a and a is represented by either entry. Multiple entries areij ji

permitted and are summed. This is the most user-friendly format that we have been able to

devise, and is the same as that of MA27.

We describe the algorithm in Section 2. There are four subroutines that are called directly by

the user:

Initialize. MA47I provides default values for the arrays that together control the execution of the

package.

Analyse. MA47A accepts the pattern of A and makes a tentative choice of block pivots. It also

calculates other data needed for actual factorization. The user may provide a pivotal

sequence, in which case the necessary data will be generated.

Factorize. MA47B accepts a matrix A together with a set of recommended block pivots. It

performs the factorization, including additional permutations when they are needed for

numerical stability.

Solve. MA47C uses the factorization produced by MA47B to solve the equations Ax = b.

These are described in detail in a separate report (Duff and Reid 1995), in which the specification
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document is included as an appendix. Section 3 is devoted to our experience of the actual running

of the code. The code has been placed in the Harwell Subroutine Library and is available from

AEA Technology, Harwell; the contact is Dr John Harding, Harwell Subroutine Library, Bldg.

552, AEA Technology, Harwell, Didcot, Oxon OX11 0RA, tel (44) 1235 434573, fax (44) 1235

434340, email john.harding@aeat.co.uk, who will provide details of price and conditions of use.

We also provide a complex version of the code, which handles symmetric complex matrices. We

have chosen not to offer a version for Hermitian matrices because significant changes would

have been needed to keep track of which off-diagonal entries move between the two triangular

halves as permutations are made.

2 The algorithm

Our algorithm is based on the work of Duff, Gould, Reid, Scott, and Turner (1991) which uses

2 × 2 pivots with zeros on the diagonal to assist in the preservation of sparsity. Additionally, it is

advantageous to perform elimination with several pivots simultaneously which we do by

accumulating them into a block pivot.

We use block pivots that may be

(i) of the form

0 A1 (2.1)TA 01

with A square, which we call an oxo pivot;1

(ii) of the form

A A 0 A2 1 1or (2.2)T TA 0 A A1 1 2

with A square, which we call a tile pivot; or1

(iii) of any other form, which we call full.

We will use the term structured for a pivot that is either a tile or an oxo pivot. The blocks A and1

A are usually full and we always store them as full matrices. Note that the inverse of a tile is a2

tile with its zero block in the other diagonal position. The inverse of an oxo is an oxo.

The matrix modifications of a block pivotal step that lie outside the pivot rows and columns

(which we call the Schur update) are not applied at the time but are stored in a generated element

matrix. This has entries only in a principal submatrix that after permutation has the general form
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0 B B2 3
TB B B , (2.3)2 1 4
T TB B 03 4

where the blocks on the diagonal are square. This is the form of the submatrix altered by a pivotal

step with an oxo pivot and is illustrated in Figure 2.1. The blocks B , B , B , and B are usually1 2 3 4

full and we always store them as full matrices. A tile pivot produces the special case of this form

where the first or last block row and column is null. It is illustrated in Figure 2.2. For a full pivot,

the generated element is held as a full matrix, which is the special case where the first and last

block row and column are both null.

× × × × × ×
× × × × ×

× × × × × ×
× × × × × ×

× × × × × × × × ×
× × × × × × × × ×
× × × × ×
× × × × ×
× × × × ×

Figure 2.1. An oxo pivot, its pivot rows and columns, and fill-in pattern (generated element).

× × × × × × ×
× × × × ×

× × × × × × × ×
× × × × × × × ×

× × × × × × × × ×
× × × × × × × × ×
× × × × ×
× × × × ×
× × × × ×

Figure 2.2. A tile pivot, its pivot rows and columns, and fill-in pattern (generated element).

We have chosen the multifrontal technique (Duff and Reid 1983) for the sake of efficiency

during the analyse phase and to permit extensive use of full-matrix code and the BLAS (Basic

Linear Algebra Subprograms: Lawson, Hanson, Kincaid, and Krogh 1979, Dongarra, Du Croz,

Hammarling, and Hanson 1988, Dongarra, Du Croz, Duff, and Hammarling 1990) during
( l )factorization. We will use the notation B for the generated element matrix from the l-th (block)

( l ) ( l )pivotal step and the notation A and B to denote the submatrices of A and B obtained byk k

removing the rows and columns corresponding to the first k (block) pivotal steps. Following

(block) step k, the reduced matrix is held as

4



( l ) (2.4)A + B∑k k
l ∈ Ik

( l )where I is the set of indices of element matrices that are active then. If B has entries only ink k − 1
( l ) ( l )the pivotal rows and columns, B will be zero and l is omitted from the index set I . Other Bk k k

( k )may have entries that lie entirely within the pattern of the newly generated element B ; for
( l ) ( k ) ( l )efficiency, such a B is added into B and l is omitted from I . We say that B is absorbedk k k

( k )into B .

Such absorption certainly takes place if the pivot is full and overlaps one or more of the
( l ) ( l )diagonal entries of B since in this case the pivot row has an entry for every index of B . If allk k

the pivots are full, all generated elements are full and therefore any generated element that is

involved in a pivotal step is absorbed. This is the situation for a definite matrix.

In the definite case, the whole process may be represented by a tree, known as the assembly

tree, which has a node for each block pivotal step. The sons of a node correspond to the element

matrices that contribute to the pivotal row(s) and are absorbed in the generated element. Here, it

is efficient to add all the generated elements from the sons and the pivot rows from the original

matrix into a temporary matrix known as the frontal matrix, which can be held in a square array

of size the number of rows and columns with entries involved. The rows and columns are known

as the front. For a fuller description of this case, see Duff, Erisman, and Reid (1986), Sections

10.5 to 10.9.

Given an assembly tree, there is considerable freedom in the ordering of the block pivotal

steps during an actual matrix factorization. The operations are the same for any ordering such

that the pivotal operations at a node follow those at a descendant of the node (apart from

round-off effects caused by performing additions in a different order). Subject to this

requirement, the order may be chosen for organizational convenience. For a uni-processor

implementation, it is usual to base it on postordering following a depth-first search of the tree,

which allows a stack to be used to store the generated elements awaiting assembly. We follow

this practice.

When there are some structured pivots, we employ the same assembly tree, but a generated

element is not necessarily absorbed at its father node. Instead, it may persist for several

generations, making contributions to several pivotal rows, until it is eventually absorbed. As an

illustration of absorption not occurring, a simple 1×1 pivot might overlap the leading (zero)

block of (2.3). In such a case, B and B are absorbed but the non-pivotal rows of B and B are1 4 2 3

inactive during this step (unless made active by entries from other generated element matrices).
( l ) ( l )Absorption of B occurs for a structured pivot if an off-diagonal entry of B overlaps thek k

off-diagonal block A of the pivot. This is seen by regarding the structured pivot as a sequence of1

1 × 1 pivots, starting with the off-diagonal entry and its symmetrically placed partner. To handle

the structured case efficiently, we sum only the contributions to the pivot rows, form the Schur
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update, and then add into it any generated elements from the sons that can be absorbed. The

frontal matrix is thus more complicated, but we still refer to the set of rows and columns involved

as the front.

Similarly, the stack is more complicated. Access will be needed to generated elements

corresponding to descendants (not just children), but these will still be nearer the top of the stack

than any generated elements that do not correspond to descendants. When a generated element is

absorbed, it may leave a hole in the stack. These holes are tolerated until the stack become too

large for the available memory, at which point we perform a simple data compression. To aid

both access to data in the stack and to aid stack compression, we merge adjacent holes as soon as

they appear.

It is interesting to consider the effect of using full frontal matrices of sufficient size that each

can accommodate all the elements and generated elements of its sons. Apart from round-off

effects caused by performing additions in a different order, the operations performed on nonzeros

will be the same, but there will be many additional operations involving zeros and there will be

many stored zeros. Delaying the assemblies is our way of exploiting the sparsity.

Previously (Duff, Gould, Reid, Scott, and Turner 1991), we had anticipated working with

generated elements (after permutation) of the forms

B B 0 B1 2 3and . (2.5)T TB 0 B 02 3

A tile generated element is of the first form and an oxo generated matrix can be represented as

the sum of a matrix of the first form plus one of the second form:

0 B B 0 B 0 0 0 B2 3 2 3
T TB B B = B B B + 0 0 0 . (2.6)2 1 4 2 1 4

TT T T B 0 0B B 0 0 B 0 33 4 4

We have decided to use the form (2.3) because, in the case of an oxo generated element,

(i) the duplication of the index lists of the first and third blocks is avoided;

(ii) for a row of the first or third block, one rather than two elements involve it and need

to be included in a list of elements associated with the row (such lists are needed

during the analyse phase); and

(iii) a link would need to be maintained between the two parts of an oxo generated

element in order to recognize that both parts of the element can be absorbed when an

off-diagonal entry overlaps the off-diagonal block A of a structured pivot.1
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2.1 The design of the factorized form

Two considerations had a profound effect on our design for the factorized form:

(i) the wish to use block operations during both factorization and solution, and

(ii) the wish to be able readily to modify the factorization so that it is a factorization of a

positive-definite matrix, needed in some optimization calculations.

For a full pivot, both are easy to achieve. If the pivot A is full, we factorize it as11

TA = L D L , (2.7)11

where L is unit lower triangular and D is a block diagonal matrix with blocks of order 1 or 2, and

have the matrix factorization

TA A L D11 12 L M= , (2.8)T T A − SA A M I I2212 22

where M is the matrix of multipliers

−1 −1M = D L A (2.9)12

and A − S is the Schur complement, where22

T T −1S = M D M = A A A (2.10)12 11 12

is the Schur update. D may be perturbed to a positive-definite matrix by examining its (1 × 1 and

2 × 2) diagonal blocks and changing the diagonal entries as necessary.

A comparable factorization to (2.7) for a block tile pivot is

T0 A L 0 D L U1 1 1 1 2A = = , (2.11)T T T11 D DA A U U U1 21 2 2 1 1

where L is unit lower triangular, U is unit upper triangular, U is strictly upper triangular, and1 1 2

D and D are diagonal. The special case U = D = 0 corresponds to a block oxo pivot. Note1 2 2 2

that the relationship

A = L D U (2.12)1 1 1 1

holds, so that a conventional triangular factorization of A is included. We show that (2.11), with1

U strictly upper triangular, is a correct factorization by performing a symmetric permutation to2

place the rows and columns in the order 1, r+1, 2, r+2, 3, r+3, ..., where 2r is the order of the

matrix in equation (2.11). This gives the block tile form of the symmetric matrix

t t . . t11 12 1r
t t . . t21 22 2r
. . . . . (2.13)
. . . . .

t t . . tr1 r2 rr
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where each t is a 2 × 2 matrix whose (1,1) element is zero (each t is a tile). Using t , t , ..., tij ij 11 22 rr

as pivots, this matrix has the factorization

T TI l . . l21 r1I d11
TI . . ll I d r221 22

. . . . , (2.14). . .

. . . . . . .
l l . . I dr1 r2 rr I

where each l has a zero in position (2,1) and each d is a symmetric tile. If we now apply theij ii
T Tinverse permutation, we get the form (2.11) with the lower triangular entries of L , U , U ,1 2 1

respectively, being the (1,1), (2,1), (2,2) entries of l , and the diagonal entries of D and D ,ij 1 2
respectively, being the (2,1) and (2,2) entries of d . An alternative derivation of (2.11) is byii

0 A1application of a sequence of elementary row and column operations that reduce to theTA A1 2
0 D1form in column 1, row 1, column r+1, row r+1, column 2, row 2, column r+2, rowD D1 2

r+2, ... . Note that, apart from the effects of reordering additions and subtractions, the forms
(2.11) and (2.14) yield the same numerical values. We use both forms in our code. We compute
the factors with (2.14). We apply the factors in solutions and in Schur updates using (2.11),
which permits use of block operations.

0 D1The diagonal entries of can be changed to make it positive definite as easily as thoseD D1 2
of D in (2.7). Thus, we may regard (2.7) as applicable to the tile case with

L D D1 3 1L = and D = . (2.15)T T D DU U 1 22 1

The special case U = 0 corresponds to an oxo pivot.2

We therefore store, for each block pivot, L, D, and M. The matrices L and D may be packed to
take advantage of their form. For an oxo pivot, the nonzero columns of M are ordered to the form

M M 0 05 6M = . (2.16)0 M M 07 8

and only the blocks M , M , M , and M are stored. For a tile pivot, the first block column is5 6 7 8
absent. These forms are discussed further in Section 2.3.

2.2 Analyse phase

In the analyse phase, we simulate the operations of the factorization, representing each generated
element by three index lists and assuming that every pivot chosen is acceptable numerically. This
allows the processing to be efficient and there is no need for any numerical values, but the pivotal
sequence chosen has to be regarded as tentative. The analyse phase is faster than it would be if
numerical values were taken into account and its storage demands are much more modest.

For pivotal strategy, we use the variant of the Markowitz (1957) criterion recommended by
Duff, Gould, Reid, Scott, and Turner (1991). The Markowitz cost
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2(r − 1) (2.17)i

for a diagonal entry a , with row count r (number of entries in the row), is extended toii i

(r − 1) (r + r − 3) (2.18)i i j

for a tile pivot with nonzero a , andii

(r − 1) (r − 1) (2.19)i j

for an oxo pivot. Applying a structured pivot is mathematically equivalent to pivoting in turn on

the two off-diagonal entries of the pivot. In the oxo case, expression (2.19) is the Markowitz cost

of either of these pivots. In the tile case, expression (2.18) is a bound for the Markowitz costs.

We find a pivot that minimizes this extended Markowitz cost by searching the rows in order of

increasing row count as follows:

main_loop: for r := 1 step 1 until n do

if there is a row i with row count r such that a ≠ 0 thenii

accept it as a 1 × 1 pivot and exit main_loop

end if

for each row i with row count r do

for each variable j for which there is a nonzero entry (i, j) in

the current reduced matrix do
2if the Markowitz cost ≤ (r −1) then

accept (i, j) as a 2 × 2 pivot and exit main_loop

end if

if the Markowitz cost is the smallest so far found, store it as such

end do

end do
2if there is a stored 2 × 2 pivot with Markowitz cost ≤ r then

accept the 2 × 2 pivot and exit main_loop

end if

end do

We also provide an option to limit the search to a given number of rows with least entries.

We found it convenient to build a tree that represents the grouping of variables into blocks as

well as the assemblies. It has a node for every variable, rather than for every block pivot. In the

positive-definite case, this bigger tree is the elimination tree (see, for example, Liu 1990), so we

will call it the elimination tree in this more general setting. The variables of a full pivot or of

either of the halves of a structured pivot are linked together in a chain whose head we call the

principal variable. The two principal variables of a structured pivot are linked together as father

and son. Only these father nodes and the principal variables of full pivots have a node in the

assembly tree.
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It is interesting that if the same pivot sequence is a applied to the matrix obtained by adding

entries to all the positions corresponding to zeros in the pivots and the elimination tree is formed,

it is identical to our elimination tree apart from the detail in our tree within each tile and oxo

pivot.

One of the ways to speed the analyse phase is to recognize rows with the same structure, both

in the original matrix and the successive reduced matrices. The set of variables that correspond to

such a set of rows is called a supervariable and we represent the matrix pattern in terms of

supervariables. We allow a supervariable to consist of a single variable. If the rows do not have

entries on the diagonal, we say that the supervariable is defective. Each supervariable is indexed

by one of its variables, which is its principal variable.

A simple example of a matrix and its elimination tree is shown in Figure 2.3. Here there are

just two block pivots; the first is an oxo pivot of order 6 with variable 4 as its first principal

variable and the second is a full pivot of order 2 with variable 7 as its principal variable. Variable

1 is the principal variable of the other half of the oxo pivot and node 1 is the son of node 4 in the

elimination tree. The other variables are linked in chains to the three principal variables.

× × × × × 7
× × × × ×
× × × × × 8 4

× × × × × 5 1× × × × ×  
× × × × × 6 2× × × × × × × ×

3× × × × × × × ×

Figure 2.3. A matrix pattern with its elimination tree.

We begin the analyse phase by recognizing rows with identical structure and forming

supervariables. With careful choice of data structures (see Section 2.7), the amount of work

performed for each matrix entry is bounded by a constant, so the whole process executes in

O(n + τ) time, where τ is the number of entries. This leaves us with a forest with a node for each

variable and the variables of each supervariable in a chain with the principal variable at its head.

This forest is gradually modified until it becomes the elimination tree. At an intermediate

stage, each tree of the forest has a root that represents the principal variable of either

(i) a supervariable that has not yet been pivotal, or

(ii) a supervariable that has been pivotal and whose generated element matrix is zero or

has not yet contributed to a pivotal row.

The node of a principal variable that has been eliminated may be regarded as also representing

the element generated when it was eliminated. When a pivot block is chosen, the node of its
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principal variable is given as sons the roots of all the trees that contain one or more generated

elements that contribute to the pivot rows. If the pivot is a structured pivot, it is also given as a

son the principal variable of the second part. Some amalgamation of supervariables may follow

the pivotal step, since the fill-ins may cause some rows to have identical structures in the reduced

matrix.

We have noted that a generated element matrix need not be absorbed at its father node. Indeed,

it may persist for many generations of the tree, contributing to pivotal rows at each stage. This

may mean that all that is left is a zero matrix, which is all or part of one of the zero blocks of

(2.3). It might be thought that such a zero matrix could be discarded, but to do so risks the loss of

a property of an assembly tree that we wish to exploit: the block pivotal steps may be reordered

provided those at a node follow those at all descendants of the node. We must therefore retain

such a zero element matrix and whenever one of its variables becomes pivotal, make the root of

its tree a son of the pivot node.

In the irreducible case, this eventually yields the elimination tree, whose root is the only node

with a zero generated element matrix. The node represents the final block pivot, which obviously

leaves a null Schur complement. If the original matrix is reducible, it must be block diagonal

since it is symmetric. In this case, the problem consists of several independent subproblems and

there will be a tree for each. It is not difficult to allow for this and our code does so. For

simplicity of description, however, we assume that the matrix is irreducible.

A depth-first search of the elimination tree allows the pivotal sequence to be found, including

the grouping of variables into blocks that are eliminated together. At the same time, the assembly

tree is constructed.

The opportunity is taken to look for father-son amalgamations that can take place with no extra

fill-in, since most of them can be found by a simple test involving the number of variables

eliminated at the son and the row counts before elimination. We have chosen to rely on this as the

only mechanism that we employ to find block pivots when the user specifies the pivotal order. It

is also useful when the pivotal order and tree are chosen by the code. Many block pivots will be

found through the use of supervariables, but not all since it would be costly to ensure that every

possible supervariable is identified (we see no way of doing this without at least one sweep of all

the index lists for the supervariables).

If a father and son are both full pivots and the number of variables eliminated at the son is

equal to the difference between the son’s row count before elimination and the father’s before

elimination, there is no extra fill-in if they are amalgamated. The frontal matrix for the father

node has the pattern of the element generated by the son and there is no advantage in treating

them separately. This is particularly likely to happen near the root because the reduced matrix is

often full in the final stages.

Similarly, a father-son pair of tiles can be amalgamated without extra fill-in if the counts for
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the rows with nonzero diagonal entries differ by the number of variables eliminated and the

counts for the rows with zero diagonal entries differ by half the number of variables eliminated.

A simple example is shown in Figure 2.4. Here there is no fill-in and the row counts at the time of

elimination are (5,3) and (3,2).

× × × × ×
× × ×
× × × × ×
× × ×
× × × × ×

Figure 2.4. A father-son pair of tile pivots for which amalgamation is possible.

To see if a father-son pair of oxos can be amalgamated without extra fill-in, we test the

differences for each of the halves against half the number of variables eliminated. Unfortunately,

when the row counts for the two halves are identical, we cannot be sure that the two halves of the

son do not need to be interchanged if extra fill-in is to be avoided. A simple case is shown in

Figure 2.5. where variables 1 and 2 are eliminated at the son node and variables 3 and 4 at the

father node. Checking for such an event requires more information at the nodes than is available

at this time. We therefore do not amalgamate oxo nodes where the row counts of the two halves

are the same.

× × ×
× × ×
× × ×

× × ×
× × × × ×

Figure 2.5. A father-son pair of oxo pivots for which amalgamation is possible

if the variables of the father are interchanged.

We also perform some amalgamation that does involve extra fill-in because of the advantages

of reasonably large block sizes, particularly on a vector or parallel computer. Interfering with a

structured pivot may lead to greatly increased fill-in, so we do this only for father-son pairs that

are full. Also, we require that all ancestors be full, too, to avoid indirectly affecting a structured

pivot. This leads us to using a depth-first search to look for father-son amalgamations. These

amalgamations are controlled by a parameter (with default value 5) which is a limit on the

number of variables at a node that is amalgamated with another.
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2.3 Factorization

The factorization is controlled by the assembly tree created at the end of the analyse phase. For
stability, all the pivots are tested numerically. If the updated entries of the fully-summed rows in
the front are f , the test for a 1 × 1 pivot isij

|f | ≥ u max |f |, (2.20)kk kj
j≠k

where u is a pivot threshold parameter given a default value during initialization (see discussion
in Section 3), and the test for a 2 × 2 pivot is

max |f |−1 kj −1f f ukk k,k+1 j≠k, k+1 ≤ . (2.21)−1f f max |f | uk+1,k k+1,k+1 k+1,j
j≠k, k+1

For a tile pivot, it is possible for this test to fail and yet taking its two diagonal entries in turn as
1 × 1 pivots would lead to two 1 × 1 pivots that satisfy inequality (2.20). Using this pair is
mathematically equivalent. We therefore accept the tile pivot in this case, too. For the second
1 × 1 pivot, we test the inequality

2f fk+1,k k+1,kf − ≥ u max f − f . (2.22)k+1,k+1 k+1,j kjf fj≠k, k+1k,k k,k

As well as the relative tests we have just described, we also apply an absolute test on the size
of a 1 × 1 pivot or the off-diagonal entry of a 2 × 2 pivot. By default, the value of this pivot
tolerance is zero.

These numerical tests may mean that some rows that we expected to eliminate during a block
pivotal step remain uneliminated at the end of the step. These rows are stored alongside the
generated element for treatment at the father node. We call these rows fully-summed since we
know that there are no contributions to be added from elsewhere, unlike the rows of the
generated element. At the father node, the possible pivot rows consist of old fully-summed rows
coming from this son and perhaps other sons, too, and the new fully-summed rows that were
recommended as pivots by the analyse phase.

If a full block pivot was recommended, we choose a simple 1×1 or 2 × 2 pivot and perform the
corresponding elimination operations on the pivot rows before choosing the next simple 1×1 or
2 × 2 pivot. Both old and new fully-summed rows are candidates. We know of no other strategy
for ensuring that the block pivot as a whole is satisfactory. Note, however, that the calculations
for the Schur update can be delayed and performed as a block operation once all pivots are
chosen.

If a structured block was recommended, the analyse phase expects that the new fully-summed
rows have the form

A A A A 0 0 0 A A A 0 02 1 5 6 1 5 6or (2.23)T TA 0 0 A A 0 A 0 0 A A 01 7 8 1 7 8

after suitable permutations. We need to check that the potential pivots (leading two block

columns in 2.22) still have this form since earlier changes to the pivotal sequence may destroy it.
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Assuming that the form is still there, we again choose simple pivots one at a time and perform the

corresponding elimination operations on the pivot rows before choosing the next simple pivot.

We restrict these pivots to 2 × 2 pivots of the desired form in the new fully-summed rows, noting

that each is identified by an entry of the A block. We therefore search A or its reduced form,1 1

again using the test (2.21) for stability.

If any fully-summed rows remain in the front after completion of this sequence of simple 2 × 2
pivot operations, we look for simple 1 × 1 and 2 × 2 pivots in these rows, exactly as for the case

when full pivots were recommended. Note that these rows may be new fully-summed rows in

which we failed to find a structured pivot or old fully-summed rows from the sons of the node. If

any 1 × 1 or 2 × 2 full pivots are chosen, we regard the generated element as full, but by forming

the Schur update for the rows of the structured pivots separately, we can at least take some

advantage of the zero block or blocks within it.

Provided enough pivots are selected in the block pivot step, we use Level 3 BLAS (Dongarra,

Du Croz, Duff, and Hammarling 1990) for constructing the Schur update. In the case of a full

pivot, the Schur update is

TS = M D M (2.24)

where M is a rectangular matrix and D is a diagonal matrix with blocks of order 1 and 2 (see

equation (2.10)). Within the frontal matrix, we hold a compact representation of M that excludes

zero columns. Therefore, our real concern is the efficient formation of the product (2.24) for a

full rectangular matrix M. Unfortunately, there are no BLAS routines for forming a symmetric

matrix as the product of two rectangular matrices, so we cannot form D M and use a BLAS
Troutine for calculating M (D M) without doing about twice as much work as necessary. We

therefore choose a block size b (with default size 5 set by the initialization routine) and divide the

rows of M and D M into strips that start in rows 1, b+1, 2b+1, ... . This allows us to compute the

block upper triangular part of each corresponding strip of S in turn, using SGEMM for each strip

except the last. For the last (undersize) strip, we use simple Fortran code and take full advantage

of the symmetry. Note that if b > n, simple Fortran code will be used all the time.

For an oxo pivot, the matrix D M has the form

−1L A A 0 0 M M 0 01 5 6 5 6D M = = (2.25)T 0 A A 0 0 M M 0U 7 8 7 81

and the matrix M has the form

−1D M M 0 0 0 M M 01 5 6 9 10M = = . (2.26)−1 0 M M 0 M M 0 0D 7 8 11 121

We may form the Schur update

14



0 B B 02 3 T0 MT 11B B B 0 M M 0 02 1 4 T T 5 6= M M (2.27)T T 9 12 0 M M 0B B 0 0 7 83 4 TM 0100 0 0 0
0 0

by the calculations

TB B = M M M ,2 3 11 7 8

TB = M M , (2.28)4 12 8

MT T 6B = M M .1 9 12 M7

We may use the BLAS 3 routine SGEMM directly for the first two calculations. For the symmetric

matrix B , we subdivide the computation into strips, as for the full-pivot case.1

For a tile pivot, the sparsity in the first block column of the above form is lost:

−1L A A 0 01 5 6D M = . (2.29)T T 0 A A 0U U 7 82 1

We therefore amalgamate the first two blocks to give

M 0 06D M = (2.30)M M 07 8

−1 −1 −1− D D D D M 0 0 M M 01 2 1 1 6 9 10M = = . (2.31)−1 M M 0 M 0 0D 0 7 8 121

The Schur update calculation is therefore as in the oxo case except that the first block row and

column is not present and we have only the calculations for B and B .1 4

2.4 Solution

The solution is conveniently performed in two stages. The first, forward substitution, consists of

solving

T(P L P ) y = b (2.32)

and the second, back-substitution, consists of solving

T T(P D L P ) x = y. (2.33)

For the first step of the forward substitution, let

b1
−1P b = b (2.34)2

b3

where b corresponds to the block pivot and b corresponds to the rest of the first front. We need1 2

to solve the equation
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L b' b1 1
TM I b' = b . (2.35)2 2

0 0 I b' b3 3

This involves the forward substitution

L b' = b (2.36)1 1

and the modification

Tb' = b – M b' . (2.37)2 2 1

In the case of a full pivot, we can employ the Level 2 BLAS routine STPSV in equation (2.36)

(we pack the triangular array L to save storage) and the Level 2 BLAS routine SGEMV in

equation (2.37). For a structured pivot, it is slightly more complicated. Now L has the form

L1 , so solving equation (2.36) requires two applications of STRSV (here, we pack theT TU U2 1

arrays L , D and U together in a square array) and one application of STPMV. Also, M has the1 1 1
M M 0 05 6form so two applications of SGEMV are needed for equation (2.37).0 M M 07 8

Similar considerations apply to the other steps and to the back-substitution, too.

2.5 Recognition of supervariables

The analyse phase recognizes sets of structurally identical rows in the original matrix and forms

supervariables. With careful choice of data structures, the whole process can be made to execute

in O(n + τ) time, where τ is the number of entries. We work progressively so that after j steps we

have the supervariable structure for the submatrix of the first j columns. We start with all

variables in one supervariable (for the submatrix with no columns), then split it into two

according to which rows do or do not have an entry in column 1, then split these according to the

entries in column 2, etc. The splitting is done by moving the variables one at a time to the new

supervariable.

The variables of each supervariable are held in a circular chain. We use two integer arrays of

length n to hold links from each variable to the next and previous variable in its chain. This

allows rapid removal of a variable from a supervariable and rapid insertion of a variable in the

chain that holds another variable. We begin with all the variables linked in a single chain.

We use other integer arrays of length n as follows:–

svar(i) is the index of the supervariable to which variable i belongs.

flag is initially set to zero. flag(s) is set to j when supervariable s is encountered in

column j.

var(s) holds the index of a variable that was in supervariable s.

Using this data structure, the details of our algorithm are as follows:–
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for j := 1 step 1 until n do
for each entry i in column j do

s = svar(i) ! s is i’s old supervariable
if flag(s) < j then ! first occurrence of s for column j

flag(s) = j
if s has more than one variable then

remove i from s
create a new supervariable ns with i as its only variable
svar(i) = ns
var(s) = i

end if
else ! second or later occurrence of s for column j

k = var(s) ! k is the first variable of s encountered in column j
svar(i) = svar(k)
move i from its present chain to the chain containing k

end if
end do

end do

The elements of var that do not correspond to supervariables may be employed to hold a chain of

indices not currently in use for supervariables.

3 Numerical Experience

3.1 Introduction

In this section, we examine the performance of the MA47 code on a range of test problems on a

SUN SPARCstation 10 and a CRAY Y-MP. We study the influence of various parameter settings

on the performance of MA47 and determine the values for the defaults. We also compare the

MA47 code with the code MA27.

As always, the selection of test problems is a compromise between choosing sufficient to

obtain meaningful statistics while keeping run times and this section of the report manageable. In

Tables 1 and 2, we list the test problems used for the numerical experiments in this section. In

choosing this set, many runs were performed on other matrices so we do feel that this selection is

broadly representative of a far larger set. Our set of 22 matrices can be divided into three distinct

sets. The first (matrices 1 to 10), in Table 1, are obtained from the CUTE collection of nonlinear

optimization problems (Bongartz, Conn, Gould, and Toint, 1993). The problems in that set are

parameterized, and we have chosen the parameters to obtain a linear problem of order between

about 1000 and 20000. In each case, we solve a linear system whose coefficient matrix is the

Kuhn-Tucker matrix of the form
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H A
,TA 0

where H is an m × m symmetric matrix and A is of dimension m × n. We are grateful to Ali

Bouaricha and Nick Gould for extracting these matrices for us from CUTE. The second and third

sets are obtained by forming augmented systems of the form

I A D A Iand , with D =T T 0A 0 A 0

respectively, where the matrix A is from the Harwell-Boeing Collection (Duff, Grimes, and

Lewis, 1992) or the netlib LP collection (Gay, 1985). The matrix D has m−n unit diagonal entries

and n zeros on the diagonal. We use the six matrices from these collections that are shown in

Table 2, which gives us another twelve test cases according to the two forms of augmentation

shown above. In all cases, the dimensions are given in the tables and are the number of rows in A

and the total order of the augmented system. The number of entries is the total number in the

upper triangular part of the augmented matrix.

Case Identifier Order m Order Number Description
m+n of entries

1 BRITGAS 3102 5802 15282 British gas pipe network distribution
problem.

2 BIGBANK 2230 3342 8056 Nonlinear network problem.
3 MINPERM 8347 16551 16863 Minimize the permanent of a doubly

stochastic matrix.
4 SVANBERG 14000 21000 91000 Structural optimization.
5 BRATU2D 5184 10084 29684 Finite-difference discretization of

nonlinear PDE on unit square.
6 BRATU3D 4913 8288 28538 Finite-difference discretization of

nonlinear PDE on unit cube.
7 GRIDNETC 7564 11408 30256 A nonlinear network problem on a

square grid.
8 QPCSTAIR 614 970 4617 STAIR LP with additional convex

Hessian.
9 KSIP 1021 2022 22023 Discretization of a semi-infinite QP.

10 AUG3DQP 3873 4873 10419 QP from nine-point formulation of 3-D
PDE.

Table 1. The CUTE matrices used for performance testing.

Case Identifier Order m Order Number Description
m+n of entries

11/17 FFFFF800 1028 1552 7429 LP. Oil industry.
12/18 PILOT 4860 6301 40235 LP. Energy model from Stanford.
13/19 ORSIRR 2 886 1772 6861 Oil reservoir simulation.
14/20 JPWH 991 991 1982 7018 Circuit physics modelling.
15/21 BCSSTK27 1224 2448 29899 Structural engineering. Buckling

analysis.
16/22 NNC1374 1374 2748 9980 Nuclear reactor core modelling.

Table 2. Matrices used for augmented systems. Matrices 11 to 16 have I as leading block and
matrices 17 to 22 have D.

Before conducting a systematic study of the parameters, we first experimented to see the effect

of using the extended Markowitz cost computed in the analyse phase (see equations (2.17),
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(2.18), and (2.19)) to decide whether to allow prospective pivots in the factorize phase. The logic

of this scheme, which was proposed by Duff, Reid, Gould, Scott, and Turner (1991), is that

changes to the pivotal sequence from the analyse phase may mean that later pivots in their

recommended position in the pivotal sequence would be poor choices. There is, however, a

counter-balancing effect whereby even if the pivot is very much poorer on sparsity grounds than

predicted, it may be worse to delay using it because of further build up of unanticipated fill-in. In

effect, it may be better to “bite the bullet” and take the bad pivot early rather than late.

When we tested this option on the examples in Table 1, we found that there was usually little

to choose between including the Markowitz test or not. However, in most cases it was slightly

worse to use the Markowitz test and, in one case, the factorization time was increased by nearly a

factor of 14 and the total storage for the factorization by nearly a factor of 6. Since there were no

examples so dramatically favouring the Markowitz test, we have decided to drop it from the

code. We have, however, left in the structure for the test and have only commented out the test

itself. We believe that possible future changes to the way we handle fully summed blocks might

make the test useful in a later version of the code.

In our program for running the numerical experiments, we have an option to prescale the

matrices using Harwell Subroutine MC30. In nearly all the cases, there is very little difference in

performance or accuracy whether scaling is used or not. There were, however, two cases where

additional pivoting on the unscaled systems caused a significant increase in time and storage for

the factorization, with only one case significantly the other way. We feel more comfortable

assessing the performance on scaled systems, so we use this option in all the runs in this paper.

In the following subsections, we examine the relative performance when a single parameter is

changed by means of the median, upper-quartile, and lower-quartile ratios over the 22 test

problems. We use these values rather than means and variances to give some protection against

stray results caused either by the timer or by particular features of the problems. We remind the

reader that half the results lie between the quartile values. Full tables of ratios are available by

anonymous ftp from numerical.cc.rl.ac.uk (130.246.8.23) in the file pub/reports/ma47.tables. In

Section 3.2, we consider the effect of choosing the option to restrict the pivot choice to a small

number of columns, and we examine the effect of altering the pivot threshold in Section 3.3. We

study the effect of changing the amount of node amalgamation in Section 3.4. In Sections 3.5 and

3.6, we examine the use of higher level BLAS; the Level 3 BLAS in the factorization in the first

section and the use of Level 2 BLAS in the solution phase in the second. Finally, in Section 3.7,

we show the performance of our code with default parameter values on the test problems and

compare it with the Harwell Subroutine Library code MA27.
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3.2 Effect of restricting pivot selection

If we restrict the number of rows that we search to find a pivot, we might expect to reduce the

time for the analyse phase at the cost, perhaps, of more storage and time in the factorization.

Clearly, the choice depends on the relative importance of the phases. We show the results of runs

varying the search limit in Tables 3 to 5. The times in these tables are in seconds on the SUN

SPARCstation 10.

Total storage Storage for factors Time (SUN)
Predicted Actual Predicted Actual Analyse Factorize Solve One-off

lower q. 0.97 1.00 0.98 1.00 0.95 0.98 0.97 0.97
median 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00
upper q. 1.00 1.04 1.00 1.02 1.01 1.06 1.03 1.03

Table 3. Results with search limit of 2 rows divided by those with limit of 4.

Total storage Storage for factors Time (SUN)
Predicted Actual Predicted Actual Analyse Factorize Solve One-off

lower q. 1.00 0.97 1.00 0.99 0.98 0.96 0.99 0.97
median 1.00 1.00 1.00 1.00 0.99 1.01 1.00 1.01
upper q. 1.08 1.09 1.02 1.01 1.01 1.10 1.03 1.07

Table 4. Results with search limit of 4 rows divided by those with limit of 10.

Total storage Storage for factors Time (SUN)
Predicted Actual Predicted Actual Analyse Factorize Solve One-off

lower q. 1.00 1.00 0.97 1.00 0.73 0.95 0.96 0.94
median 1.00 1.00 1.00 1.00 0.95 1.00 0.98 0.99
upper q. 1.06 1.76 1.00 1.35 1.00 1.86 1.28 1.43

Table 5. Results with search limit of 10 divided by those with no search limit.

The medians are near 1.0, showing slight gains to the analyse time by restricting the pivot

search at a cost of a slightly more expensive factorization. The costs for a “one-off” run of a

single analysis followed by one factorization and solution, show that there is really quite a

balance in the competing trends. The upper quartile figures markedly support having no search

limit (that is, using a Markowitz count), so we have decided to keep that as the default and use it

for the later runs in this paper.

3.3 Effect of change in pivot threshold

In MA27, a value of 0.1 was chosen for the default value of the threshold parameter, u (see

equations (2.20) and (2.21)), since smaller values gave little appreciable benefit to sparsity in the

experiments that we conducted at that time. However, the more complicated data structures in

MA47 and the greater penalties for not being able to follow the pivotal sequence recommended

by the analyse phase penalizes higher values of u to a greater extent than in the earlier code. We

investigate this in Tables 6 to 10.
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Storage required Time (SUN)
Total Factors Analyse Factorize Solve

lower q. 1.00 1.00 1.00 1.08 1.01
median 1.14 1.09 1.00 1.78 1.07
upper q. 2.14 1.53 1.00 3.32 1.42

Table 6. Results with threshold u set to 0.5 divided by those with u = 0.1.

Storage required Time (SUN)
Total Factors Analyse Factorize Solve

lower q. 1.00 1.00 0.96 0.99 1.00
median 1.02 1.05 0.98 1.07 1.03
upper q. 1.28 1.23 1.00 1.97 1.22

Table 7. Results with threshold u set to 0.1 divided by those with u = 0.01.

Storage required Time (SUN)
Total Factors Analyse Factorize Solve

lower q. 1.00 1.00 0.94 1.00 0.98
median 1.00 1.03 0.99 1.11 1.02
upper q. 1.14 1.16 1.03 1.63 1.12

Table 8. Results with threshold u set to 0.01 divided by those with u = 0.001.

Storage required Time (SUN)
Total Factors Analyse Factorize Solve

lower q. 1.00 1.00 1.00 1.03 1.02
median 1.00 1.00 1.03 1.08 1.07
upper q. 1.07 1.05 1.08 1.42 1.10

Table 9. Results with threshold u set to 0.001 divided by those with u = 0.0001.

Storage required Time (SUN)
Total Factors Analyse Factorize Solve

lower q. 1.00 1.00 0.99 1.00 0.99
median 1.00 1.00 1.00 1.01 1.00
upper q. 1.01 1.02 1.00 1.09 1.03

Table 10. Results with threshold u set to 0.0001 divided by those with u = 0.00001.

We also, of course, monitored the numerical performance for all these runs. Although the

results from using a threshold value of 0.5 were better than 0.1 for a couple of test problems,

notably the NNC1374 example, it was substantially more expensive to use such a high value for

the threshold. For lower values of the threshold, the scaled residual was remarkably flat for all of
−6the test problems until values of the threshold less than 10 when poorer results were obtained

on three of the examples.

From the performance figures in Tables 6 to 10, the execution times and storage decline almost

monotonically but have begun to level off by about 0.0001 (although there are a couple of

outliers). However, we are anxious not to compromise stability and recognize that our numerical

experience is necessarily limited. We have therefore decided to choose as default a threshold

value of 0.001 since, for many problems, much of the sparsity benefit has been realized at this

value.
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3.4 Effect of node amalgamation

The node amalgamation parameter, discussed at the end of Section 2.2, controls the

amalgamation of neighbouring nodes in the assembly tree to obtain larger blocks (and more

eliminations within each node) at the cost of extra fill-in and arithmetic. No node is amalgamated

with another unless its number of variables is less than the parameter value. This feature was also

present in the MA27 code. One intention of performing more amalgamations is that there should

be more scope for the use of Level 3 BLAS, which might be expected to benefit platforms with

efficient Level 3 BLAS kernels.

We show the results of running with various levels of amalgamation in Tables 11 to 13. As

expected, there is a difference of performance between the two machines. On the CRAY, a

higher amount of amalgamation is beneficial. On the SUN, there is a slight gain from some

amalgamation, but the effect is reversed before the amalgamation parameter reaches 10. In the

interests of choosing a default value that is satisfactory on several platforms (even if not

optimal), we have chosen the value 5. Note that people running extensively on a vector machine,

like a CRAY, may wish to increase this (say to 20).

Total storage Storage for factors Time
Predicted Actual Predicted Actual Analyse Factorize Solve One-off

CRAY lower q. 0.78 0.88 0.77 0.84 1.00 1.00 0.73 1.00
median 0.95 0.95 0.87 0.92 1.01 1.13 0.83 1.03
upper q. 1.00 1.00 1.00 1.00 1.03 1.37 1.00 1.10

SUN lower q. 0.78 0.90 0.77 0.84 1.00 1.00 0.82 1.00
median 0.95 0.95 0.87 0.92 1.02 1.03 0.92 1.01
upper q. 1.00 1.00 1.00 1.00 1.03 1.11 1.00 1.07

Table 11. Results with no amalgamation divided by those with parameter 5.

Total storage Storage for factors Time
Predicted Actual Predicted Actual Analyse Factorize Solve One-off

CRAY lower q. 0.84 0.85 0.80 0.81 1.00 1.00 1.00 1.00
median 0.91 0.96 0.87 0.92 1.00 1.02 1.11 1.01
upper q. 1.00 1.00 1.00 1.00 1.01 1.14 1.25 1.05

SUN lower q. 0.84 0.86 0.80 0.81 0.98 0.95 0.91 0.96
median 0.91 0.96 0.87 0.92 0.98 0.97 0.96 0.98
upper q. 1.00 1.00 1.00 1.00 1.00 1.00 1.01 0.99

Table 12. Results with amalgamation parameter set to 5 divided by those with parameter 10.

Total storage Storage for factors Time
Predicted Actual Predicted Actual Analyse Factorize Solve One-off

CRAY lower q. 0.82 0.83 0.77 0.80 1.00 1.00 1.00 1.00
median 0.89 0.94 0.86 0.88 1.00 1.00 1.10 1.00
upper q. 1.00 1.00 1.00 1.00 1.01 1.05 1.22 1.01

SUN lower q. 0.82 0.83 0.77 0.80 1.00 0.87 0.91 0.98
median 0.89 0.94 0.86 0.87 1.02 0.98 0.98 1.00
upper q. 1.00 1.00 1.00 1.00 1.05 1.03 1.00 1.03

Table 13. Results with amalgamation parameter set to 10 divided by those with parameter 20.
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3.5 Effect of change of block size for Level 3 BLAS during factorization

A major benefit of multifrontal methods is that the floating-point arithmetic is performed on

dense submatrices. In particular, if we perform several pivot steps on a particular frontal matrix,

Level 3 BLAS can be used. However, in the present case, we also wish to maintain symmetry

and the current Level 3 BLAS suite does not have an appropriate kernel. We thus, as discussed in

Section 2.3, need to split the frontal matrix into strips, starting at rows 1, b+1, 2b+1, ..., so that we

can use Level 3 BLAS without doubling the arithmetic count. In fact, in a block of size b on the

diagonal, the extra work is b∗(b−1) floating-point operations. Clearly this means that, while we

would like to increase b for Level 3 BLAS efficiency, by doing so we increase the amount of

arithmetic. In this section, we examine the trade off between these competing trends.

We show results for various values of the block-size parameter, b, in Tables 14 to 16. It would

seem, from these results, that a modest value is best and we choose 5 as the default value on the

basis of these figures.

Analyse Factorize Solve One-off
CRAY lower q. 1.00 1.01 0.99 1.00

median 1.00 1.05 1.00 1.01
upper q. 1.00 1.14 1.00 1.03

SUN lower q. 1.00 1.00 0.98 0.99
median 1.01 1.02 1.00 1.01
upper q. 1.01 1.06 1.02 1.03

Table 14. Times with block-size parameter b set to 1 divided by those with b = 5.

Analyse Factorize Solve One-off
CRAY lower q. 1.00 0.95 1.00 0.98

median 1.00 0.98 1.00 0.99
upper q. 1.00 1.00 1.00 1.00

SUN lower q. 0.99 0.99 0.99 0.99
median 1.00 0.99 1.00 0.99
upper q. 1.01 1.01 1.01 1.00

Table 15. Times with block-size parameter b set to 5 divided by those with b = 10.

Analyse Factorize Solve One-off
CRAY lower q. 1.00 0.73 1.00 0.91

median 1.00 0.90 1.00 0.97
upper q. 1.00 1.00 1.00 1.00

SUN lower q. 0.98 0.92 0.98 0.94
median 1.00 0.96 0.99 0.98
upper q. 1.01 0.99 1.00 1.00

Table 16. Times with block-size parameter b set to 10 divided by those with b = 20.

We show in Table 17 a comparison between results with b = 5 and b > n, which corresponds to

no blocking and the use of simple Fortran code. Interestingly, the results are almost identical.
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Analyse Factorize Solve One-off
CRAY lower q. 1.00 0.97 1.00 0.99

median 1.00 0.99 1.00 1.00
upper q. 1.00 1.01 1.02 1.00

SUN lower q. 1.00 0.97 0.98 0.99
median 1.00 1.00 1.00 1.00
upper q. 1.03 1.02 1.03 1.01

Table 17. Times with block-size parameter b set to 5 divided by those with b > n.

3.6 Effect of change of block size for level 2 BLAS during solution

In a single block pivot stage of the solution phase, one can use indirect addressing for every

operation. Alternatively, one can load the appropriate entries of the right-hand side vector into a

small full vector corresponding to the rows in the current front, update this vector with Level 2

BLAS operations, and finally scatter it back to the full vector.

We have experimented with the parameter that determines whether to use indirect or direct

addressing in the solution phase. Direct addressing is used (and Level 2 BLAS called) if the

number of pivots at a step is more than this parameter. Thus, for high values of the parameter,

there will be less use of Level 2 BLAS. We show a summary of our results in Table 18. As can be

seen, the results are quite flat. On the largest of our problems, there was some gain by using a

value of 4 for the Level 2 blocking and so we have chosen that as our default.

Parameter ratio 1:2 2:4 4:8 8:16
CRAY lower q. 1.00 1.00 1.00 1.00

median 1.04 1.03 1.03 1.00
upper q. 1.10 1.06 1.13 1.07

SUN lower q. 0.97 0.99 0.94 0.94
median 1.00 1.00 0.98 0.98
upper q. 1.02 1.03 1.06 1.04

Table 18. Ratios of solve times with different values for the parameter for indirect addressing.

3.7 Performance of MA47 and comparison with MA27

In the past five subsections, we have considered the effect of various controlling parameters on

the performance of MA47. We now examine the performance of our code with the default values

for the parameters on both the SUN SPARCstation 10 and the CRAY Y-MP. The storage counts

and times for the problems of Tables 1 and 2 are shown in Tables 18 and 19. It was our original

intention that this new MA47 code would replace MA27 in the Harwell Subroutine Library.

However, the added complexity of the new code will penalize it if it is unable to take advantage

of the structure. We thus might expect that sometimes MA47 would be better and sometimes

MA27. We illustrate this by showing the comparison ratios for the two codes in Tables 20 and 21.
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Storage (millions of words)
Case Total For factors Time

Predicted Actual Predicted Actual Analyse Factorize Solve
1 BRITGAS 0.52 0.59 0.28 0.34 12.40 10.96 0.16
2 BIGBANK 0.09 0.09 0.07 0.07 1.22 0.37 0.04
3 MINPERM 0.12 0.12 0.09 0.09 0.60 0.45 0.13
4 SVANBERG 1.07 0.89 0.94 0.77 12.43 3.17 0.36
5 BRATU2D 1.22 1.22 0.95 0.95 80.35 8.29 0.33
6 BRATU3D 4.09 3.94 2.32 2.18 18.00 70.53 0.65
7 GRIDNETC 0.43 0.43 0.36 0.36 1.62 1.45 0.19
8 QPCSTAIR 0.13 0.14 0.07 0.08 0.44 0.80 0.03
9 KSIP 0.14 0.70 0.11 0.20 4.68 19.28 0.07

10 AUG3DQP 0.29 0.29 0.20 0.20 0.70 1.16 0.09
11 FFFFF800 0.18 0.17 0.12 0.09 1.24 1.08 0.04
12 PILOT 1.58 1.74 0.80 0.84 9.80 15.07 0.28
13 ORSIRR 2 0.44 0.44 0.24 0.25 1.48 2.87 0.08
14 JPWH 991 0.84 0.94 0.43 0.35 1.57 6.99 0.11
15 BCSSTK27 0.18 0.18 0.10 0.10 0.94 0.21 0.04
16 NNC1374 0.38 1.32 0.32 0.48 1.88 29.89 0.16
17 FFFFF800 0.04 0.06 0.03 0.04 0.77 1.29 0.02
18 PILOT 0.29 0.29 0.16 0.19 4.97 2.76 0.10
19 ORSIRR 2 0.28 0.93 0.13 0.30 1.21 25.14 0.11
20 JPWH 991 0.57 0.99 0.14 0.26 2.37 24.08 0.10
21 BCSSTK27 0.17 0.17 0.10 0.10 0.98 0.22 0.04
22 NNC1374 0.11 0.25 0.09 0.14 2.47 5.54 0.06

Table 19. Performance of runs of MA47 code on the SUN SPARC-10.

Storage (millions of words)
Case Total For factors Time

Predicted Actual Predicted Actual Analyse Factorize Solve
1 BRITGAS 0.52 0.59 0.28 0.35 9.63 3.46 0.06
2 BIGBANK 0.09 0.09 0.07 0.07 0.99 0.19 0.03
3 MINPERM 0.12 0.12 0.09 0.09 16.27 0.35 0.09
4 SVANBERG 1.07 1.07 0.94 0.95 10.06 1.63 0.27
5 BRATU2D 1.22 1.22 0.95 0.95 75.64 1.79 0.12
6 BRATU3D 4.09 3.94 2.32 2.18 16.69 7.17 0.11
7 GRIDNETC 0.43 0.43 0.36 0.36 1.59 0.71 0.15
8 QPCSTAIR 0.13 0.14 0.07 0.08 0.39 0.28 0.01
9 KSIP 0.14 0.70 0.11 0.20 6.24 2.97 0.02

10 AUG3DQP 0.29 0.29 0.20 0.20 0.58 0.41 0.06
11 FFFFF800 0.18 0.17 0.12 0.09 1.16 0.35 0.02
12 PILOT 1.58 1.74 0.80 0.84 9.06 2.78 0.08
13 ORSIRR 2 0.44 0.44 0.24 0.25 1.38 0.56 0.02
14 JPWH 991 0.84 0.94 0.43 0.35 1.30 1.25 0.02
15 BCSSTK27 0.18 0.18 0.10 0.10 0.91 0.16 0.02
16 NNC1374 0.38 1.32 0.32 0.47 1.51 2.43 0.03
17 FFFFF800 0.04 0.06 0.03 0.04 0.78 0.68 0.01
18 PILOT 0.29 0.29 0.16 0.19 3.94 1.63 0.05
19 ORSIRR 2 0.28 0.93 0.13 0.30 1.17 3.38 0.02
20 JPWH 991 0.57 0.99 0.14 0.26 2.39 4.92 0.02
21 BCSSTK27 0.17 0.17 0.10 0.10 0.92 0.17 0.02
22 NNC1374 0.11 0.23 0.09 0.14 2.00 1.51 0.03

Table 20. Performance of runs of MA47 code on the CRAY Y-MP.
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Case Total storage Storage for factors Time
Predicted Predicted Actual Analyse Factorize Solve One-off

1 BRITGAS 1.90 1.11 1.25 29.74 7.66 1.47 12.04
2 BIGBANK 1.49 1.31 1.29 4.52 1.86 1.69 3.31
3 MINPERM 1.01 1.12 1.12 1.85 1.31 2.95 1.66
4 SVANBERG 0.96 1.36 1.11 2.75 1.03 1.16 2.02
5 BRATU2D 1.36 1.15 0.47 83.26 0.23 0.55 2.36
6 BRATU3D 1.48 1.10 0.48 10.23 0.26 0.47 0.32
7 GRIDNETC 1.56 1.37 1.38 2.72 1.29 1.47 1.77
8 QPCSTAIR 2.52 1.57 1.64 3.52 3.17 1.53 3.20
9 KSIP 1.30 0.96 0.44 15.00 0.58 0.43 0.72

10 AUG3DQP 1.86 1.46 1.46 2.33 1.25 1.46 1.52
11 FFFFF800 1.80 1.63 1.01 3.00 1.42 1.09 1.95
12 PILOT 1.55 1.20 1.15 1.25 0.99 1.00 1.08
13 ORSIRR 2 1.61 1.15 0.42 4.11 0.26 0.52 0.38
14 JPWH 991 2.04 1.48 0.43 3.29 0.24 0.47 0.30
15 BCSSTK27 0.80 0.45 0.27 1.41 0.07 0.41 0.31
16 NNC1374 2.43 2.19 1.10 5.88 3.39 1.12 3.44
17 FFFFF800 0.41 0.40 0.39 1.83 1.14 0.59 1.31
18 PILOT 0.28 0.25 0.15 0.65 0.06 0.24 0.15
19 ORSIRR 2 1.04 0.61 0.50 3.39 2.31 0.72 2.32
20 JPWH 991 1.40 0.47 0.31 4.97 0.96 0.46 1.03
21 BCSSTK27 0.76 0.45 0.27 1.44 0.07 0.44 0.32
22 NNC1374 0.70 0.59 0.81 7.79 6.72 1.13 6.74
lquart 0.96 0.59 0.42 1.85 0.26 0.47 0.38
median 1.44 1.14 0.66 3.34 1.09 0.86 1.59
uquart 1.80 1.37 1.15 5.88 1.86 1.46 2.36

Table 21. Ratio of performance of MA47 code to MA27 code on the SUN SPARC-10.

Case Total storage Storage for factors Time
Predicted Predicted Actual Analyse Factorize Solve One-off

1 BRITGAS 1.90 1.11 1.28 23.21 9.40 2.22 16.24
2 BIGBANK 1.49 1.31 1.29 3.08 1.70 1.89 2.69
3 MINPERM 1.01 1.12 1.12 59.17 1.42 2.53 30.05
4 SVANBERG 0.96 1.36 1.37 1.68 1.29 2.14 1.62
5 BRATU2D 1.36 1.15 0.47 71.49 0.51 1.93 16.71
6 BRATU3D 1.48 1.10 0.48 7.79 0.46 1.29 1.34
7 GRIDNETC 1.56 1.37 1.38 2.70 1.49 2.11 2.16
8 QPCSTAIR 2.52 1.57 1.64 2.35 3.03 1.83 2.57
9 KSIP 1.30 0.96 0.44 14.83 0.30 1.20 0.88

10 AUG3DQP 1.86 1.46 1.46 1.91 1.62 1.97 1.79
11 FFFFF800 1.80 1.63 1.01 2.03 2.05 1.80 2.03
12 PILOT 1.55 1.20 1.15 0.86 1.35 1.78 0.95
13 ORSIRR 2 1.61 1.15 0.42 3.00 0.54 1.83 1.30
14 JPWH 991 2.04 1.48 0.43 2.30 0.54 1.44 0.88
15 BCSSTK27 0.80 0.45 0.27 1.01 0.22 1.46 0.67
16 NNC1374 2.43 2.19 1.10 4.04 1.90 1.72 2.38
17 FFFFF800 0.41 0.39 0.38 1.36 3.14 1.44 1.84
18 PILOT 0.28 0.25 0.15 0.38 0.40 1.10 0.38
19 ORSIRR 2 1.04 0.61 0.51 2.53 3.33 1.67 3.07
20 JPWH 991 1.40 0.47 0.31 4.24 2.37 1.40 2.77
21 BCSSTK27 0.76 0.45 0.27 1.02 0.25 1.38 0.69
22 NNC1374 0.70 0.59 0.81 5.35 5.86 2.00 5.48
lquart 0.96 0.59 0.42 1.68 0.51 1.44 0.95
median 1.44 1.14 0.66 2.61 1.45 1.79 1.93
uquart 1.80 1.37 1.28 5.35 2.37 1.97 2.77

Table 22. Ratio of performance of MA47 code to MA27 code on the CRAY Y-MP.

26



We show the full results in these tables as well as the medians and quartiles since the

performance can vary very widely. On the SUN, the new code factorizes matrix 18 (PILOT) over

sixty times faster than MA27 but is nearly 7 times slower than MA27 on matrix 1 (BRITGAS).

With the exception of matrix 18, the analyse phase times are always greater for the new code,

once by over a factor of 80 (matrix 5, BRATU2D). The variation is only slightly less dramatic on

the CRAY.

We have also run the codes on a set of ten Harwell-Boeing matrices with nonzero diagonal

entries (BCSSTK14/15/16/17/18/26/27/28 and BCSSTM26/27) and the results are summarized

in Table 23. On the SUN, MA47 just outperforms MA27 for the factorize and solve phases, but

otherwise is inferior. We therefore recommend that where the matrix has nonzeros on the

diagonal, MA27 should continue to be used. We plan to make a new version of MA27 that

incorporates the BLAS and some other minor improvements. We anticipate that the revised

MA27 will always outperform MA47 on this kind of matrix.

Total storage Storage for factors Time
Predicted Predicted Actual Analyse Factorize Solve One-off

CRAY lower q. 1.25 0.99 0.99 1.54 1.11 1.75 1.26
median 1.34 1.03 1.02 1.56 1.15 1.93 1.29
upper q. 1.38 1.07 1.04 1.80 1.21 2.00 1.30

SUN lower q. 1.25 0.99 0.99 1.55 0.86 0.87 0.89
median 1.34 1.03 1.02 1.70 0.94 0.94 0.98
upper q. 1.38 1.07 1.04 1.98 1.02 0.98 1.06

Table 23. MA47 to MA27 ratios on 10 matrices with nonzero entries on the diagonal.

In these comparisons, we have used the same parameter settings (where applicable) for both

codes. In particular, we have run MA27 with a value for the threshold, u, of 0.001 which is 100

times less than the default value for MA27. However, it would appear empirically that the

stability of MA27 is more sensitive to the threshold value than MA47, so we have also compared

MA47 with MA27 using its default threshold. A summary of the results in Table 24 indicates that,

in general, MA47 with its default outperforms MA27 with its default on the SUN, but the

variation in relative performance over different problem classes is still substantial. However, the

roles are reversed on the CRAY due to the greater penalty for the extra integer manipulation in

MA47. We were disappointed to find this outweighed the benefits of BLAS on the CRAY.

Total storage Storage for factors Time
Predicted Predicted Actual Analyse Factorize Solve One-off

CRAY lower q. 0.96 0.59 0.31 1.69 0.53 1.44 0.93
median 1.45 1.15 0.57 2.64 1.38 1.82 1.80
upper q. 1.86 1.46 1.21 5.41 2.04 2.18 3.13

SUN lower q. 0.96 0.59 0.31 1.88 0.25 0.45 0.33
median 1.45 1.15 0.57 3.32 0.96 0.75 1.38
upper q. 1.86 1.46 1.12 5.58 1.88 1.40 2.53

Table 24 . MA47 to MA27 ratios using default threshold value for MA27.
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In summary, these results indicate that it is “horses for courses”. MA47 does well on our

augmented systems when the (1,2) block is nearly square or when several of the diagonals of the

(1,1) block are zero. However, the efficiency of MA47 is very dependent on the details of the

assembly tree structure so it is often difficult to judge the relative performance in advance. We

find this fragility to be the most disturbing aspect of the present code and hope that further work

will improve the performance of MA47 on the “bad” cases.
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